
The HPC@PoliTO User Guide

June 2025, v0.4 (DRAFT)

2

Contents

Basic Rules 5

1 The HPC@PoliTO Infrastructure 7

1.1 Introduction . 7

1.2 The Legion cluster . 7

1.2.1 Legion Isola 1 . 8

1.2.2 Legion Isola 2 . 8

1.2.3 Cluster networking . 11

1.3 Storage systems . 13

1.3.1 Home storage . 13

1.3.2 BeeGFS scratch . 13

2 First login to the clusters 15

2.1 Connecting to the Legion login node via ssh 15

2.2 Basic commands . 16

2.2.1 man and --help command 16

2.2.2 pwd: your location . 16

2.2.3 ls: See the element inside a directory 16

2.2.4 cd: navigate inside the file system 16

2.2.5 Creating and removing directories 17

2.2.6 Vim: file editor . 17

2.3 Copying files to and from the cluster 17

2.4 Using PuTTY (only on Windows machine) 18

3 Connection to the clusters via passwordless-ssh 19

3.1 Generate key pair from a terminal 19

3.1.1 Copying the Public Key 19

3.1.2 Login . 20

3.2 Using PuTTY . 21

3.2.1 Generating a Key with PuTTYgen 21

3.2.2 Copying the Public Key 21

3.2.3 Logging in with PuTTY 22

3

4 CONTENTS

4 HPC@PoliTO file systems 25
4.1 Home directories . 25
4.2 BeeGFS scratch: high performance storage 25
4.3 File transfer between different file systems 26
4.4 Best practices . 26

5 Jobs submission 27
5.1 Shared resources . 27
5.2 SLURM scheduler . 27

5.2.1 Job parameters . 27
5.2.2 Priority calculation . 29

5.3 Submission script . 30
5.3.1 Use the BeeGFS filesystem 30
5.3.2 Simulation parameters . 31

5.4 Submit a job request . 32
5.5 Check the simulation status . 32

6 Software ecosystem 33
6.1 Environment Modules . 33

Basic Rules

1. Never execute simulations or intensive tasks directly in your shell:
this would disrupt operations on the login server, making the HPC infras-
tructure unavailable for the whole community.

2. To execute their jobs, users should submit batch requests to the SLURM
scheduler. For intensive post-processing, code compilation or large data
transfers, users should instead request interactive sessions to the SLURM
scheduler.

3. The HPC@PoliTO infrastructures should only be used for academic or
teaching purposes.

4. Users are responsible for all activities originating from their account. They
should therefore be aware about their account security, adopt safe prac-
tices and avoid accounts sharing.

5. Users agree to acknowledge the HPC@PoliTO initiative in any publica-
tions and talks that use data originating from our facilities. We suggest
the following citation:

”Computational resources provided by HPC@PoliTO (www.hpc.polito.it)”

6. After the expiration of an HPC account, data in the home directory are
stored for a limited amount of time (t.b.d., hypothetically 6 months).
Users are responsible for collecting and downloading their data before
their account expires or asking HPC@PoliTO for their recovery as soon
as the account expires (provided it will not be extended).

5

6 CONTENTS

Chapter 1

The HPC@PoliTO
Infrastructure

1.1 Introduction

The HPC@PoliTO infrastructure is currently made of two separate clusters.
Hactar is our legacy cluster, it was first deployed in 2015 and currently only
used for light workloads by students teams and for teaching purposes. Legion is
our flagship cluster, it was first deployed in 2019 and underwent a major upgrade
at the end of 2024. It is used by many research groups at Politecnico di Torino
(PoliTO), whose financial contributions are crucial for the overall evolution of
the cluster.

1.2 The Legion cluster

Legion was originally deployed in 2019 and underwent a first early expansion
in 2020. Between the end of 2024 and the first half of 2025, the cluster was
the subject of a major upgrade that roughly doubled its compute node count.
To manage different technologies between old and new hardware, two major
partitions have been defined: Isola 1 and Isola 2.
Although Isola 1 and Isola 2 are logically separated and jobs should not be
run across the two (to avoid bottlenecks due to different generations hardware
working together), overall Legion is considered a single cluster: sharing login,
management and storage infrastructures. When submitting jobs users should
specify which partition they want to use.
Legion is a shared resource batch system whose job scheduling is based on
SLURM [?]. Further information about job submission and scheduling policies
can be found in Chapter 5.

7

8 CHAPTER 1. THE HPC@POLITO INFRASTRUCTURE

Node type CPU Cores RAM GPU Disk
CPU node 2 x Intel Xeon 6130 32 384 GB N/A 1 TB HDD
GPU node 2 x Intel Xeon 6130 32 384 GB 4 x V100 (32 GB) 1 TB HDD

Table 1.1: Legion Isola 1 - Compute nodes

1.2.1 Legion Isola 1

Legion Isola 1 collects early-deployed compute nodes (from 2019-2020) which
are then further partitioned accordingly to different access policies. Isola 1, as
represented in Figure 1.1 contains 58 compute nodes, 6 of which are config-
ured with NVIDIA V100 GPUs. The compute nodes within Isola 1 have the
characteristics reported in Table 1.1.

The nodes within Isola 1 are then logically divided into partitions with dif-
ferent access policies; in Table 1.2 each partition is reported together with its
usage policies.
Open access partitions are available to each HPC user and are defined among
all available compute nodes. Users scheduling jobs on these partitions are given
the same priority and are subject to stricter job walltimes.
Restricted partitions are defined among a subset of the available compute nodes,
as represented in Figure 1.2. Users may have access to restricted partitions if
their research group (or the group they are collaborating with) provided finan-
cial support to buy compute nodes. Jobs scheduled on restricted partitions are
given the highest possible priority in order to start as soon as the requested
resources are available.
Contrary from past implementations, Legion partitions do not implement job
suspension or preemption: high priority jobs would eventually need to wait for
jobs running on open partitions to finish before they can start.

1.2.2 Legion Isola 2

Legion Isola 2 was deployed between late 2024 and early 2025 following a dra-
matic expansion of computing resources thanks to the contribution of research
groups at PoliTO and the availability of NextGenEU (PNRR) grants. Isola 2,
as represented in Figure 1.3 contains 73 compute nodes, 26 of which are con-
figured with NVIDIA A40 GPUs and another 1 configured with NVIDIA A100
GPUs. The compute nodes within Isola 2 have the characteristics reported in
Table 1.3.

The nodes within Isola 2 are then logically divided into partitions with dif-
ferent access policies; in Table 1.4 each partition is reported together with its
usage policies.
Open access partitions are available to each HPC user and are defined among
all available compute nodes. Users scheduling jobs on these partitions are given
the same priority and are subject to stricter job walltimes.
Restricted partitions are defined among a subset of the available compute nodes,

1.2. THE LEGION CLUSTER 9

Partition Nodes Access Priority Walltime
cpu skylake 52 (CPU) open standard 120 hrs

cpu skylake ext 10 (CPU) open standard 240 hrs
gpu v100 6 (GPU) open standard 120 hrs

gpu v100 ext 1 (GPU) open standard 240 hrs
disma skylake 16 (CPU) restricted highest N/A
denerg skylake 6 (CPU) restricted highest N/A
bluen skylake 6 (CPU) restricted highest N/A
e3 skylake 3 (CPU) restricted highest N/A

simdome skylake 2 (CPU) restricted highest N/A
small skylake 2 (CPU) restricted highest N/A
cwc skylake 2 (CPU) restricted highest N/A

andriulli skylake 2 (CPU) restricted highest N/A
nemo skylake 2 (CPU) restricted highest N/A
pt-erc skylake 1 (CPU) restricted highest N/A
polive skylake 1 (CPU) restricted highest N/A
waterview v100 1 (GPU) restricted highest N/A
simdome v100 1 (GPU) restricted highest N/A
disma v100 1 (GPU) restricted highest N/A

smartdata v100 1 (GPU) restricted highest N/A
energycenter v100 1 (GPU) restricted highest N/A

Table 1.2: Legion Isola 1 - Partitions

Node type CPU Cores RAM GPU Disk
CPU node 2 x Intel Xeon 6442Y 48 512 GB N/A 1 TB NVMe

GPU node A40 2 x Intel Xeon 6442Y 48 512 GB 4 x A40 (48 GB) 1 TB NVMe
GPU node A100 2 x Intel Xeon 6442Y 48 1024 GB 4 x A100 (80 GB) 1 TB NVMe

Table 1.3: Legion Isola 2 - Compute nodes

10 CHAPTER 1. THE HPC@POLITO INFRASTRUCTURE

Figure 1.1: Legion Isola 1

Figure 1.2: Partitions Legion Isola 1

1.2. THE LEGION CLUSTER 11

Partition Nodes Access Priority Walltime
cpu sapphire 45 (CPU) open standard 24 hrs

cpu sapphire ext 2 (CPU) open standard 120 hrs
gpu a40 27 (GPU) open standard 24 hrs

gpu a40 ext 4 (GPU) open standard 120 hrs
gpu a100 1 (GPU) open standard 24 hrs
lining cpu 23 (CPU) restricted highest N/A
nemo cpu 3 (CPU) restricted highest N/A

melodizer cpu 2 (CPU) restricted highest N/A
mics cpu 2 (CPU) restricted highest N/A
serics cpu 2 (CPU) restricted highest N/A
teperc cpu 2 (CPU) restricted highest N/A

ddambrosio cpu 2 (CPU) restricted highest N/A
crest cpu 2 (CPU) restricted highest N/A
nodes cpu 1 (CPU) restricted highest N/A
comp cpu 1 (CPU) restricted highest N/A
hester cpu 1 (CPU) restricted highest N/A

invernizzi cpu 1 (CPU) restricted highest N/A
rossi cpu 1 (CPU) restricted highest N/A
fair gpu 6 (GPU) restricted highest N/A

restart gpu 6 (GPU) restricted highest N/A
smartdata gpu 6 (GPU) restricted highest N/A

serics gpu 3 (GPU) restricted highest N/A
musychen gpu 2 (GPU) restricted highest N/A

cgvg gpu 1 (GPU) restricted highest N/A

Table 1.4: Legion Isola 2 - Partitions

as represented in Figure 1.4. Users may have access to restricted partitions if
their research group (or the group they are collaborating with) provided finan-
cial support to buy compute nodes. Jobs scheduled on restricted partitions are
given the highest possible priority in order to start as soon as the requested
resources are available.
Legion partitions do not implement job suspension or preemption: high priority
jobs would eventually need to wait for jobs running on open partitions to finish
before they can start.

1.2.3 Cluster networking

Legion deals on three separate networks to operate:

• Management network (1 GbE): to remotely manage individual servers;

• Service network (10 GbE): used by cluster services and for user homes;

12 CHAPTER 1. THE HPC@POLITO INFRASTRUCTURE

Figure 1.3: Legion Isola 2

Figure 1.4: Partitions Legion Isola 2

1.3. STORAGE SYSTEMS 13

• Infiniband network: used for multi-node jobs and high-performance IO.

Management and Service are implemented as standard TCP/IP ethernet
networks, with 1 Gb/s and 10 Gb/s bandwidth, respectively. The network
topology is linear with all switches connected at the same hierarchical level.

The architecture of the Infiniband network reflects instead the partitioning
of Legion into Isola 1 and Isola 2 as two parallely connected fat-tree structures.
Isola 1 implements a 100 Gb/s Infiniband EDR fat-tree network, while Isola 2
a 200 Gb/s Infiniband HDR fat-tree network. The two root switches are then
interconnected with an aggregate of Infiniband EDR links resulting in a 600
Gb/s bandwidth. Although multi-node MPI jobs should not be run between
Isola 1 and Isola 2 nodes, a high-bandwidth interconnection between the two
guarantees an effective sharing of the storage infrastructure.

These different networks operate in the backend of the cluster and their
usage is transparent for users when everything works fine.

1.3 Storage systems

The High Performance Computing infrastructure is supported by two comple-
mentary storage systems: a high-capacity Network Attached Storage (NAS)
to store user homes and data and a lower-capacity BeeGFS parallel filesystem
that provides a scratch space for IO intensive workloads that require parallel
high-speed operations.

1.3.1 Home storage

The Home storage system is implemented with a high-capacity Network Area
Storage (NAS) that exports user home folders to login and compute nodes using
the NFS protocol over the Service network (10 GbE).

This system provides roughly 1.2 PB of available space to be shared among
all users. User quota for the Home storage is defaulted to 1.5 TB, with possible
temporary extensions to be granted upon motivated request. User homes are
subject to automatic removal after 6 months from the account expiration.

1.3.2 BeeGFS scratch

The BeeGFS scratch is implemented with a state-of-the art multi-node storage
system supported by a fault-tolerant backend network of full-NVMe LUNs.

This system provides roughly 800 TB of available space to be shared among
all users. User quota for the BeeGFS scratch is defaulted to 5 TB and subject
to automatic cleaning of all files older than 30 days. Temporary extensions of
the quota may be granted upon motivated request.

14 CHAPTER 1. THE HPC@POLITO INFRASTRUCTURE

Chapter 2

First login to the clusters

2.1 Connecting to the Legion login node via ssh

To connect to the cluster, use the ssh protocol (Secure Shell). Open a new
shell window in your terminal. On Linux and macOS devices, you can use
the native terminal. For Windows users, we recommend using a PowerShell
terminal, though it is also possible to open an ssh connection directly from the
Command Prompt. The shell window can be opened in any directory.

ssh username@hpc-legionlogin.polito.it

If this is the first time you are connecting to the cluster, you will be asked to
authenticate the machine, confirm by typing yes)

As illustrated in Figure3.1, if this is your first time logging into Legion you
will be asked to prompt the One-Time Password (OTP) that you have been
provided when the account was activated. When entering the password no
characters or placeholders will appear on the screen; once you have typed your
password, press enter. The system will ask you immediately to change your
password: follow the prompts you are given.

Upon successfull authentication, a new bash shell will be opened, the clus-
ter’s welcome page will appear and you will be in your home directory on the
Home storage: /home/username.

Figure 2.1: First time access

15

16 CHAPTER 2. FIRST LOGIN TO THE CLUSTERS

2.2 Basic commands

2.2.1 man and --help command

To see the full documentation about any command in the terminal, use the
command:

man <command>

To have a quick idea of what the command does and the option of the command,
use:

<command> --help

The former command provides the full documentation, the latter provides a
summary of the syntax and of the more commonly used option (usually sufficient
for most users).

2.2.2 pwd: your location

To see your current location in the file system, use the command:

pwd

This command prints the absolute path of the current directory.

2.2.3 ls: See the element inside a directory

To see the elements inside a directory use the command

ls [options] <path>

If you provide a directory name or a path, the command will show the contents
of that specific directory. Use the -a option to include hidden files (name starts
with.), or -l to view detailed information about the contents (e.g. dimension,
owner, last modified, permissions...). Options can be combined (e.g., -la) to
display both sets of information. the syntax is: -la).

2.2.4 cd: navigate inside the file system

To navigate among folders in the filesystem use the command cd (Change Di-
rectory). Provide the directory name or its path (paths always start with /).

cd directory_name

To go in the directory before (on the path), use

cd ..

2.3. COPYING FILES TO AND FROM THE CLUSTER 17

2.2.5 Creating and removing directories

To create a new directory use the command:

mkdir directory_name

If you do not specify a location, the directory will be created at your current
position.
To remove a directory, with all the files stored inside, use:

rm -r directory_name

2.2.6 Vim: file editor

With Vim, you can modify existing files or create new ones:

vi file_name

If the file name does not exists the system will automatically create a file with
that name in your location (you can open a file in a location different specifying
the absolute path of the file). The main commands to use Vim are:

• i: insert text (use esc to quit inserting mode)

• :wq: save and exit

• :q!: exit without exiting

2.3 Copying files to and from the cluster

If you need to copy files or directories between your local host and the cluster
(or vice versa), you can use the scp command (Secure Copy Protocol). Open
a new shell window on your local host and use the following commands: scp

(Secure Copy Protocol). From your host to the cluster

scp -r path_local_host \\

username@{login_node}:/home/username/path_server_side

From the cluster to your host (notice that the following command must be run
on your host)

scp -r username@{login_node}:/home/username/path_server_side

path_local_host

If you have not set up the passwordless login, you will be prompted your pass-
word, otherwise, the copying process starts. The option -r is needed when
copying directories, as it enables recursive copying of all files and subdirecto-
ries.

18 CHAPTER 2. FIRST LOGIN TO THE CLUSTERS

Figure 2.2: PuTTY setup

2.4 Using PuTTY (only on Windows machine)

From a Windows device, instead of using the terminal, it is possible to use
PuTTY, a third-part application, to log in to the cluster. PuTTY emulates
a Linux terminal on your host device and is available for download at https:
//putty.org/. To configure PuTTY, enter in the host name section your user-
name and the login node to which you want to connect. We suggest to save
the session using the specific area on the PuTTY main page. Once you have
completed the procedure, open the connection, you will be prompted for the
password.

https://putty.org/
https://putty.org/

Chapter 3

Connection to the clusters
via passwordless-ssh

3.1 Generate key pair from a terminal

After receiving the HPC@PoliTO credentials, to enhance their account secu-
rity, users should proceed to create their own OpenSSH private/pubic key pair
(RSA). More information on RSA cryptography can be found at this link:
https://en.wikipedia.org/wiki/RSA_cryptosystem.

To generate the private/public key pair you should first open a new shell
window in their terminal (Linux and Mac users should use the native termi-
nal while Windows users should use Windows PowerShell). When in a clean
terminal window (independently on the actual working directory), you should
prompt the following command:

ssh-keygen -t rsa

The system will propose the path where to save the key (if you change the
path, you will need to specify where to find the key each time it is used). The
system will then ask for a passphrase to protect the private key. This is a
password to protect the private key in the host. If you set a passphrase, every
time the key will be used, you will be asked for the passphrase. If you decide
not to set a passphrase, leave the field blank.

3.1.1 Copying the Public Key

After copying the public key from your local host to the cluster, the system
will be able, comparing the private and public keys, to recognize you as an
authorized user of the system.

19

https://en.wikipedia.org/wiki/RSA_cryptosystem

20CHAPTER 3. CONNECTION TO THE CLUSTERS VIA PASSWORDLESS-SSH

Figure 3.1: Output of the command ssh-keygen

From Linux/Unix/OS X systems

On Unix based systems, there is a built-in command to copy the public key to
a given server; this command will take care of all the settings required on the
server side:

ssh-copy-id [-i <FilePath>/KeyName.pub] username@{login_node}

Option -i is needed in case you have saved the public key in a non-default path.

From Windows systems

If you use the Windows PowerShell terminal, you need to manually copy the
public key (id rsa.pub) into the .ssh directory on the server. First, create the
.ssh directory in your home on the cluster:

mkdir .ssh

Then return to the host shell and use the command scp to copy the public
key to the cluster:

scp <$FilePath>\id_rsa.pub \

username@{login_node}:/home/username/.ssh/authorized_keys

3.1.2 Login

To check whether the procedure was successful, verify the presence, on the
server, of a file named authorized keys within the .ssh directory. This file is
where the public key is stored; it cannot have another name, since the system
will not consider it.

If the file is present, you should be able to log in to the cluster without
the need for a password. In case your private key is stored in a non-default
directory, you should pass the correct path to the ssh command as:

ssh [-i <FilePath>/KeyName] username@{login_node}

3.2. USING PUTTY 21

Figure 3.2: PuTTYgen homepage

3.2 Using PuTTY

From a Windows system, it is also possible to use PuTTY software to log in to
the cluster.

3.2.1 Generating a Key with PuTTYgen

To generate a key, you need to install PuTTYgen (a separate application from
PuTTY, available at http://www.putty.org, under ”Download PuTTY”, other
binary files). Open PuTTYgen and select the type of key you want to generate
(RSA), click on the generate button, then proceed by moving the mouse on
the blank area that appears on the window to generate the key pair.

Once the key pair has been generated, save the private key on your device
(the name and the path where you saved the key are irrelevant) and the public
key on the cluster.

3.2.2 Copying the Public Key

To provide the public key on the cluster, you can either:

• Use the scp procedure described above (using a shell terminal).

http://www.putty.org

22CHAPTER 3. CONNECTION TO THE CLUSTERS VIA PASSWORDLESS-SSH

Figure 3.3: PuTTY gen has created the key pair

• Copy the public key and paste (if you are using a PuTTY terminal, right
click) it into the authorized keys file in the .ssh directory on the server.

3.2.3 Logging in with PuTTY

To log in to the cluster, follow this procedure:

1. Navigate to the section Connection → Auth → Credentials.

2. Add the private key that you created earlier (key name.ppk).

3. Save the session and open it. PuTTY will notify you that it is authenti-
cating using your key.

3.2. USING PUTTY 23

Figure 3.4: Set the private key on PuTTY

24CHAPTER 3. CONNECTION TO THE CLUSTERS VIA PASSWORDLESS-SSH

Chapter 4

HPC@PoliTO file systems

4.1 Home directories

HPC@PoliTO users have a home directory (/home/username) that is directly
accessed upon login. Each user has a default quota of 1.5 TB in their home
directory, to store relevant data for their projects. Default quotas may be
temporarily extended upon motivated request by contacting the HPC@PoliTO
staff via email at hpc@polito.it).

As the Home storage system is implemented with a high-capacity NAS (see
Section 1.3), IO performances are limited. For this reason simulations should
not be run on data stored in the home directory. The home directory should
only be used as a ”warm” repository for data needed and produced within active
projects.

Data stored in home directories will be automatically deleted after 6 months
from the expiration of the relative account.

4.2 BeeGFS scratch: high performance storage

In addition to their home directories, each user has access to BeeGFS, a high-
performance parallel file system. Users can find their BeeGFS space mounted
at beegfs-scratch/username. Each user has a default quota of 5 TB, subject
to an automatic cleaning of all files older than 30 days. Temporary extensions
may be granted upon motivated request by contacting the HPC@PoliTO staff
via email at hpc@polito.it).

The BeeGFS scratch space is implemented with a state-of-the-art multi-node
full-NVMe storage system, designed to achieve very IO high performances (see
Section 1.3). Users should therefore use their BeeGFS scratch space to store
”hot” data needed by current simulations, as well as their immediate outputs
(waiting for post-processing).

Data should be stored in the BeeGFS scratch only for the strictly nec-
essary time to run simulations and post-process their results. As there are

25

mailto:hpc@polito.it
mailto:hpc@polito.it

26 CHAPTER 4. HPC@POLITO FILE SYSTEMS

no data protections implemented whatsoever, data consistency is never guaran-
teed on the BeeGFS scratch space.

4.3 File transfer between different file systems

Files can easily be copied (using the basic command cp) from your home direc-
tory (/home/username) to your BeeGFS scratch space (beegfs-scratch/username).
To simplify this procedure, two environment variables have been created for all
users:

• $HOME: the home directory;

• $SCRATCH: the BeeGFS file system;

Since different file systems are available to users as different directories, it is
possible to move data between them by simply using standard Linux commands
(e.g. cp) or mv. For example, to transfer fileA from the home directory to the
BeeGFS scratch space:

cp $HOME/path-to-fileA/fileA $SCRATCH/path-to-store/

A practical application of file transfer between filesystems, within the context
of a SLURM job, can be found in Section 5.3.1.

4.4 Best practices

In order to better exploit the features of each file system, users should carefully
evaluate where to store their data. While the Home storage ($HOME) provides
a large and persistent repository for users to store their project data, its read and
write performances are not well suited for running simulations on it (i.e. jobs
should not read or write data on this storage). The Home storage is therefore
ideal to store ”warm” data, which are not going to be accessed directly during
jobs (e.g. simulation results that should be stored until the end of the current
project).

On the other side, the BeeGFS storage ($SCRATCH) does not provide
a persistent repository for data (files older than 30 days are canceled), but its
high performances allow jobs to read and write directly on it without significant
bottlenecks. It is therefore suited to store ”hot” data that need to be accessed
frequently during jobs, as well as their immediate outputs (e.g. raw results that
need to be post-processed).

Chapter 5

Jobs submission

Running jobs on HPC@PoliTO’s clusters is as simple as running the following
command on the shell:

sbatch {script name}

To understand the meaning of this command and how to actually tailor it
to your applications, read through this chapter.

5.1 Shared resources

Due to the limited resources available on the cluster and the high number of
users, specific mechanisms must be implemented to ensure fair access to com-
puting resources to all users, as well as an efficient use of the infrastructure.

This problem is mainly addressed using a batch scheduler, which takes care
of collecting job requests from all users and assigns them the necessary compu-
tational resources when these are available.

5.2 SLURM scheduler

The SLURM scheduler manages all resources in the cluster, assigning compu-
tational resources to jobs when the former are available. When a job request is
submitted, it is placed in a queue where it waits until the necessary resources
are available, accordingly to the assigned priority. Jobs with higher priorities
will start as soon as the requested resources are available.

5.2.1 Job parameters

All parameters passed to SLURM are written in the following format:

#SBATCH --<parameter>

27

28 CHAPTER 5. JOBS SUBMISSION

A list of available parameters is reported for reference in Table 5.1. Some
of them are optional; others may be used alternatively (as SLURM provides
many options to fine tune submission request). In this guide, we suggest our
preferred configurations while users are always free to adopt their scripts to bet-
ter suit their workloads. According to HPC@Polito best practices, the following
parameters should always be explicitly set:

• --ntasks

• --nodes

• --ntasks-per-node

• --cpus-per-task

• --mem

• --time

• --partition

• --mail-type

• --mail-user

• --gres=gpu{N-GPUs}, if the user is submitting a request for a job that
requires the use of GPUs

Table 5.1 reports all the main parameters with a brief description of what
they do. For a complete reference on SLURM parameters visit official SLURM
webpage at https://SLURM.schedmd.com/sbatch.html.

Table 5.1: SLURM Job Options and Their Descriptions

Command Description

--ntasks Total number of tasks for the job.
--nodes Number of nodes that will be used.

--ntasks-per-node
number of tasks per node, if used with the --ntasks
option, the --ntasks option will take precedence.

--cpus-per-task number of CPU per task.

--mem
Specify the real memory required per node, default
units are megabytes.

--time

Indicates the hard run time limit, which is about the
time that processes needs to reach the end. This
value must be less than 10 days (< 240) for tasks on
global partition.

--mail-user Email where the information on task will be sent.

https://SLURM.schedmd.com/sbatch.html

5.2. SLURM SCHEDULER 29

Table 5.1: SLURM Job Options and Their Descriptions

Command Description

--mail-type

Events which cause an email notification (e.g., ALL).
Valid type values are NONE, BEGIN, END, FAIL,
REQUEUE, ALL.

--partition
Indicates the partition where the job has to be sched-
uled (default=global).

--gres-gpu:{N.of.gpu}
Generic resource scheduling, used for specifying the
required number of GPU(s) per node.

--nodelist={nodes}

Request a specific list of hosts. The job will contain
all of these hosts and possibly additional hosts as
needed to satisfy resource requirements.

--output

the standard output is redirected to the file name
specified, by default both standard output and stan-
dard error are directed to the same file.

--error
instruct Slurm to connect the batch script’s standard
error directly to the file name specified.

--workdir={directory}

If present, cause the execution of task using
the {directory} as working directory (the path of
{directory} can be specified as full path or relative
path).

--mem-per-cpu
Minimum memory required per allocated CPU, de-
fault units are megabytes (default=1000).

--exclude
Explicitly exclude certain nodes from the resources
granted to the job.

--constraint

Nodes have features assigned to them and users
can specify which of these features are required
by their job using this option, for example
--constraint="gpu". Available features can be
shown in the output section scontrol show node.

5.2.2 Priority calculation

The main factors that contribute to the assignment of job priorities are the
following:

• age factor: this factor changes dynamically and measures for how long
the job has been waiting in queue; the longer a job waits, the higher the
age factor contribution to that its priority will be.

• fair share factor: considers the amount of resources assigned to a user
during the last month. Higher priorities will be assigned to users that
used less resources in this period of time. The fair share factor is updated
each time a job ends. In SLURM, fair share usage is normalized; it is

30 CHAPTER 5. JOBS SUBMISSION

determined as the ratio between the each user usage and the total cluster
usage (UN = Uuser

Utotal
).

• job size: considers the amount of (CPU) resources requested by a job;
it can be tuned to favor smaller or larger jobs depending on the cluster’s
policies. On Legion it is set to favor larger jobs.

• partition factor: it is used to prioritize jobs scheduled on specific parti-
tions (i.e.: jobs scheduled on restricted partitions to prioritize them over
jobs scheduled on global partitions).

• TRES factor: track the usage of specific resources. On Legion the
tracked resources are: CPU, RAM and GPU. To each resource is as-
signed a specific weight, proportional to its scarcity, in order to consider
the higher costs of scarce resources.

5.3 Submission script

To run jobs on the cluster, users must submit a request to the SLURM scheduler.
Jobs should never be run directly from the shell: it is an abuse of our policies
and shows a lack of respect towards your colleagues.

A submission request to SLURM is done via a batch file, which is composed
of three main parts:

• job parameters

• application setup

• simulation run

The batch file is a script file executed by the shell. The first line of the file
specifies the type of shell in use; on our systems always use a bash shell:

#!/bin/bash

A SLURM submission file should look like the example reported in figure
5.1.

5.3.1 Use the BeeGFS filesystem

Within the SLURM submission script, users can move their data between their
home directory and their BeeGFS scratch space, before and after a simulation
run. A typical use case, within a job, is the following:

• Move data needed from the current job, from $HOME/path-to-working-
dir to $SCRATCH/path-to-simulation-dir;

• Change working directory to $SCRATCH/path-to-simulation-dir and run
your simulation on the much faster BeeGFS storage system (faster IO
typically means a faster job run);

5.3. SUBMISSION SCRIPT 31

Figure 5.1: Example of a sbatch script for SLURM

• Bring results back from $SCRATCH/path-to-simulation-dir to $HOME/path-
to-working-dir .

Users may adapt the following example to their needs:

[....]

mkdir $SCRATCH/path-to-simulation-dir

cp $HOME/path-to-working-dir/* $SCRATCH/path-to-simulation-dir

cd $SCRATCH/path-to-simulation-dir

[RUN SIMULATION]

rsync $SCRATCH/path-to-simulation-dir/* $HOME/path-to-working-dir/

5.3.2 Simulation parameters

After setting the job parameters and loading the required software modules (see
Chapter 6), the final step is to run the actual simulation. The command used to
run a simulation depends on the specific application and how it is parallelized.
All commands necessary to run an executable must be included in the script
file. Once the scheduler allocates the requested resources, only the commands
specified within the script will be run.

For example a generic MPI-based parallel application could be run as:

mpirun -np $ntasks [EXECUTABLE] -i [input_file] > [output_file]

Multiple simulations can be run sequentially within a single job request,
specifying multiple execution commands in the submission file. This can be

32 CHAPTER 5. JOBS SUBMISSION

useful when running a series of simulations with different parameters (or con-
figurations). They will be run sequentially following the same order as they
have been defined in the submission script, with one starting as soon as the one
before finishes.

5.4 Submit a job request

After editing the submission file, a job request can be simply submitted to the
SLURM scheduler by running the following command:

sbatch {script name}

where script name is the name of the SLURM submission script (provide its
path if the script is not in your current work directory).

5.5 Check the simulation status

After a job request has been submitted to the SLURM scheduler, it is possible
to monitor its progress and/or check its status in the queue. SLURM provides
several commands to help you track the state of your simulations, manage your
jobs, and gather information about the cluster’s resources. It is also possible to
setup a mail alerting within the submission script (using the --mail-user and
--mail-type), to be notified when a job starts and finishes.

A list of common SLURM commands to monitor jobs can be found in Table
5.2.

Table 5.2: Common SLURM Commands for Job Monitoring

Command Description

squeue

Displays the status of jobs in the queue. By default,
it shows all jobs, but you can filter by user squeue
-u <username>, job ID squeue -j <job id>

scontrol show job

<job id>
Provides detailed information about a specific job

sacct

Displays accounting information for all your jobs, can
be filtered to show the information about a specific
job: sacct -j <job id>.

sinfo
Provides an overview of the cluster’s partitions and
nodes, including their current availability and status.

scancel <job id>
Cancels a job by its ID. Use this command if you
need to stop a running or pending job.

Chapter 6

Software ecosystem

The software on the HPC@PoliTO infrastructure can be managed in three dif-
ferent ways:

• Centralized: system administrators provide centralized installations of
the most frequently used software suites. Users may load the required
packages via the Environment Modules software . If a particular soft-
ware is not present between the available modules, and if it’s deemed
of interest for the larger community, its installation can be requested by
users.

• Local: users are allowed to compile and install software in their home
directory, without sudo privileges. They should specify a location within
their home directory during the compilation/installation process. In this
case, HPC@PoliTO provides the module Spack which takes care of han-
dling paths and environment variables of locally installed software: as if
they were private modules.

• Containers: users are allowed to execute their own containers, without
the need of having sudo privileges, using Apptainer.

6.1 Environment Modules

The Environment Modules package allows one to dynamically change environ-
ment variables during a user session. For users, it appears as if they were
”installing” these packages on-demand. In reality, they are changing environ-
ment variables to point to centrally installed software packages on the clusters.
Using modules is recommended if the needed package and version is available.

In Table 6.1 are reported the most common options to handle modules:

33

34 CHAPTER 6. SOFTWARE ECOSYSTEM

Table 6.1: Environment Modules commands

Command Description

module avail Shows the modules available on the cluster.
module load {module name} Load the specified module.
module show {module name} Shows information about the specified module.
module list Shows modules load in this user session.
module unload {module name} Unload the specified module.
module purge Unload all modules in this user session.

	Basic Rules
	The HPC@PoliTO Infrastructure
	Introduction
	The Legion cluster
	Legion Isola 1
	Legion Isola 2
	Cluster networking

	Storage systems
	Home storage
	BeeGFS scratch

	First login to the clusters
	Connecting to the Legion login node via ssh
	Basic commands
	man and –help command
	pwd: your location
	ls: See the element inside a directory
	cd: navigate inside the file system
	Creating and removing directories
	Vim: file editor

	Copying files to and from the cluster
	Using PuTTY (only on Windows machine)

	Connection to the clusters via passwordless-ssh
	Generate key pair from a terminal
	Copying the Public Key
	Login

	Using PuTTY
	Generating a Key with PuTTYgen
	Copying the Public Key
	Logging in with PuTTY

	HPC@PoliTO file systems
	Home directories
	BeeGFS scratch: high performance storage
	File transfer between different file systems
	Best practices

	Jobs submission
	Shared resources
	SLURM scheduler
	Job parameters
	Priority calculation

	Submission script
	Use the BeeGFS filesystem
	Simulation parameters

	Submit a job request
	Check the simulation status

	Software ecosystem
	Environment Modules

